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gravity and matter fields is analyzed using methods of classical mechanics. The system exhibits regions of
chaos and dramatic changes in structural stability as the strength of the coupling between the fields is varied.
Numerical simulations suggest that Hamiltonian systems with structure appropriate for describing matter-
gravity interaction constitute a new class of nonlinear systems with very unusual and rich dynamics.
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I. INTRODUCTION

A consistent formulation of the quantum field theory of
gravity and matter fields, and a simplified model of quan-
tized conformally-flat gravity conformally coupled to a mas-
sive scalar field, was proposed in[1]. The Lagrangian of this
model has the form

L = −
1

2
s− c ,mc,m + mc

2c2d +
1

2
s− f,mf,m + mf

2f2d −
1

4!
lcc4

+
1

4!
lff4 −

1

2 ! 2!
lc2f2, s1d

in a Minkowski space-time with a metrichmn=diags1,−1,
−1,−1d, m, n=0,1,2,3. Herec=VC, where the fieldC de-
scribes the matter field with a massm and a self-interaction
coupling constantlc, f is the gravity field(the scaled con-
formal factor of the spacetime metric tensorgmn=V2hmn, f
=s3/4pGd1/2V), l=8pGm2/3, and lf

=−16pGL /3, whereG is the universal gravitational constant
and L is the cosmological constant(for a general reference
see, for example[2,3]).

We will study the stability of the classical(not quantum)
dynamics imposed by this Lagrangian. We will restrict our-
selves to the simple cosmological(minisuperspace) model
where the fields are spatially homogeneous and only con-
sider the variation of the amplitudes of the fields as a func-
tion of time. This will give valuable information about the
long-wavelength stability of spatially varying fields. Since
the fields are spatially homogeneous, we can simplify nota-
tion. If we let c=x andf=y, we can write the Lagrangian in
the form

L = −
1

2
s− ẋ2 + mx

2x2d +
1

2
s− ẏ2 + my

2y2d −
1

24
lxx

4 +
1

24
lyy

4

−
1

4
lx2y2, s2d

where ẋ=dx/dt and ẏ=dy/dt. The canonical momenta are
definedpx=]L /]ẋ andpy=]L /]ẏ and the Hamiltonian is de-

fined H8=pxẋ+pyẏ−L. This allows us to write the following
Hamiltonian for the field amplitudes:

H8 =
1

2
spx

2 + kx2d −
1

2
spy

2 + ky2d +
a

4
x4 −

b

4
y4 +

c

2
x2y2 = 0,

s3d

where we have chosenmx
2=my

2=k, lx=6a, ly=6b, and l
=2c. A distinctive feature of this Hamiltonian is that it is
unbounded from below as well as from above. The reason
for that is that they-oscillator contributes with the negative
kinetic and potential energies to the total energy of the sys-
tem. We analyze here the case whenk, a, b, andc are posi-
tive constants. Whenc=0 the uncoupledx- andy-oscillators
are stable anharmonic oscillators. Simultaneous creation of
the matter and gravity, i.e., the cosmological birth and
growth of the Universe, occurs only due to the nonlinear
coupling sc.0d of the matter and gravity oscillators. The
Hamiltonian is set equal to zero,H=0, which is a constraint
imposed by the general theory of relativity in order to get the
proper classical Einstein equations.

Within a semiclassical analysis of quantum gravity and
matter interactions, the fact that the conformal factor of the
spacetime metric contributes with a negative kinetic energy
to the total Hamiltonian has been known for a long time
[4–8]. Within a classical, nonquantized theory, a Hamil-
tonian system with a similar structure has been studied in
[9–13] to describe a Friedmann-Robertson-Walker universe
conformally coupled to a real, self-interacting, massive sca-
lar field. For that case,k= +1 sk=−1d corresponds to a posi-
tive (negative) spatial curvature. For a particular casea=b
=0, it was demonstrated in[9] how homoclinic chaos arises
out of the internal resonances betweenx and y. The ho-
moclinic chaos for the casea=0, b,0, cÞ0 was reported in
[10]. These conclusions were confirmed in[11] and [12]
where the equations for the primary fixed points of the dy-
namics for various choices of parameters,k, a, b, and c
were derived. They focused on the dynamics for the casek
=1, b=a+2c, a.0, c,0, and b,0, when the gravity-
relatedy oscillator is unstable by itself, and found that the
phase space had a mixture of chaotic and regular behavior.
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Here we focus on the parameter regionc.0, a.0, b
.0, andkù0 which is appropriate to the physical interpre-
tation of the Hamiltonian in Eq.(3) as describing the birth
and cosmological evolution of the Universe in the process of
the mutual creation of partially stable matter and gravity due
to their nonlinear coupling. Furthermore, we setb=a for the
sake of simplicity since, probably, this particular case illus-
trates well enough the general case of differenta and b if
they are both positive. The Hamiltonian then takes the form

H =
1

2
spx

2 + kx2d −
1

2
spy

2 + ky2d +
a

4
sx4 − y4d +

c

2
x2y2 = 0.

s4d

Hamilton’s equations of motion can now be written as

ẋ =
] H

] px
= px, ṗx = −

] H

] x
= − kx− ax3 − cxy2,

ẏ =
] H

] py
= − py, ṗy = −

] H

] y
= ky+ ay3 − cx2y. s5d

It is useful to write the equations of motion as coupled sec-
ond order differential equations forx andy,

ẍ + kx+ ax3 + cxy2 = 0, ÿ + ky+ ay3 − cx2y = 0. s6d

The gravity-matter interactionscÞ0d affects the matter field
and the gravity field in quite different ways. We will see this
in the Poincaré surfaces of section and oscillogramsxstd and
ystd described below.

A first step in analyzing the behavior of the system is to
find the primary fixed points of Hamilton’s equations[15].
We look for sets of pointsspx

* ,py
* ,x* ,y*d in phase space such

that (ṗx=0,ṗy=0,ẋ=0,ẏ=0). There are four sets of fixed
points, spx

* ,py
* ,x* ,y*d. They are (0,0,0,0), (0,0,±Î−k/a,0),

(0,0,0,±Î−k/a), and [0,0,±Îksc−ad / sa2+c2d,
±Î−ksa+cd / sa2+c2d]. For our system, all fixed points con-
tain imaginary terms except forspx

* ,py
* ,x* ,y*d=s0,0,0,0d

which is an elliptic(stable) fixed point. Since phase space
coordinates must be real, this is the only primary fixed point
for this system. This behavior of the primary fixed points
causes the dynamics of the system considered here to be
quite different from the conventional oscillator system dis-
cussed in[16,17], or the coupled gravity-matter system con-
sidered in[11–14].

The primary purpose of the present paper is to demon-
strate, numerically, the impressive nonlinear dynamics gen-
erated by systems with the unbounded Hamiltonians, such as
the one in Eq.(4). We discuss also a wide range of param-
eters for which the system(4) generates very interesting un-
stable solutions which, contrary to the stable(bounded) so-
lutions, approach infinity(in most cases in an explosive
fashion in a finite interval of the conformal time).

II. STABILITY OF MOTION IN PHASE SPACE

Information about the stability of this system is given in
Fig. 1 which is a course-grained stability diagram of phase
space trajectories for parametersk=1, 0.0137øaø0.135,

and 0øcø1.5. The black squares each contain a trajectory
that is stable(bounded). The white squares each contain a
trajectory which is unstable(unbounded). All trajectories
used to obtain Fig. 1 had initial conditionsspx,py,x,yd
=sd,d,0 ,0d, whered=10. The numerical criterion for insta-
bility of a trajectory was that it reach values ofx and/ory
such thatx2+y2ù107. Generally, if a trajectory is unstable,
the instability occurs very rapidly after some initial time in-
terval 0, t, tesc. Before the timet= tesc, the trajectory ap-
pears to be stable and remains at small values ofx and y.
After the time t= tesc unstable trajectories appear to diverge
exponentially or even explosively rapidly.

Because there is an elliptic fixed point at the originspx

=py=x=y=0d, there will always be a small stable harmonic
region in the immediate neighborhood of the origin.(Within
the original quantum theory of this minisuperspace model,
the latter implies that the initially small vacuum spontaneous
fluctuations of matter and gravity have to tunnel through a
finite barrier in order to give birth and subsequent inflation of
the Universe to a macroscopic state.) As we will see below,
there generally are additional complex stable regions outside
the harmonic regions. In the unstable regions in Fig. 1, much
of the complex stable region disappears. For very small val-
ues ofa (and fixedc) it becomes more and more difficult to
resolve stable and unstable regions because, as we will see,
the phase space becomes more and more complex with de-
creasing values ofa.

In Fig. 2, we show the dependence oftescon the parameter
d, which determines the initial values of the momenta fork
=1, c=0.8, anda=0.2375 in the unstable region. If we start
a trajectory farther away from the phase space origin, the
escape timetesc tends to be shorter. Although we only show
the behavior ofxstd, the other phase space coordinatesystd,
pxstd, and pystd also diverge. In Fig. 3, we showxstd for k
=1, c=0.8, anda=0.2375 and two initial conditionsd=5.9
andd=5.95 which are closer to the origin. For these values

FIG. 1. A coarse-grained plot of stable and unstable regions as a
function of parametersa and c. Black squares contain one stable
trajectory and white squares contain one unstable trajectory. In all
cases the initial conditions werespx,py,x,yd=sd,d,0 ,0d with d
=10.
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of k, a, andc, the trajectory becomes stable for all values of
d less thand=5.95. Figure 4(a) shows the stability regions
for k=1, 0øaø0.32, andc=0.8 and Fig. 4(b) shows a mag-
nification of stability regions fork=1, 0øaø0.038, andc
=0.8. The stability regions become more fractured asa de-
creases and appear to have a fractal-like character.

III. POINCARÉ SURFACES OF SECTION

We can study the overall structure of flow in the phase
space using Poincaré surfaces of section[15]. We solve
Hamilton’s equations of motion numerically and we con-
struct two types of surface of section. To show the behavior

of px andx we plot px versusx every timey=0 andpy.0.
To show the behavior ofpy andy we plot py versusy every
time x=0 andpx.0.

An important feature of this system is scale invariance.
First, if we scale the canonical variables by a factor ofÎa, so
that x̄=xÎa, ȳ=yÎa, p̄x=px

Îa, and p̄y=py
Îa, then the equa-

tions of motion for scaled variablessp̄x, p̄y, x̄, ȳd take the
form

ẋ̄ = p̄x, ṗ̄x = − kx̄− x̄3 −
c

a
x̄ ȳ2,

ẏ̄ = − p̄y, ṗ̄y = kȳ+ ȳ3 −
c

a
x̄2ȳ. s7d

Second, if we scale the canonical variables and time accord-
ing to x→Îukux̄, y→Îukuȳ, px→ ukup̄x, py→ ukup̄y, t→ t /Îuku,
then the equations of motion take the form

ẋ̄ = p̄x, ṗ̄x = − sgnskdx̄ − x̄3 −
c

a
x̄ ȳ2,

ẏ̄ = − p̄y, ṗ̄y = sgnskdȳ + ȳ3 −
c

a
x̄2ȳ.

In other words, only a sign ofk is important and it is enough
to consider only three valuesk=1,0,−1.

Thus, along a line of fixedc/a on the sa,cd plane the
equations of motion for the scaled variables are unchanged.
As we changea and c keeping the ratioc/a constant, the
structure of the phase space motion in terms of the original
variablesspx,py,x,yd will be unchanged, but its overall scale
will change depending on howa is changed. This can be
seen in Fig. 5, where we plot surfaces of section fork=1 and
c/a=0.075, but for different values ofa andc. Figures 5(a)
and 5(b) show surfaces of section ofpx versusx and py
versusy, respectively, for(a=0.06,c=0.8,c/a=0.075). Fig-
ures 5(c) and 5(d) show surfaces of section ofpx versusx and
py versusy, respectively, for(a=0.6, c=8.0, c/a=0.075).
The initial conditionsspx

o,py
o,xo,yod used to solve Hamilton’s

equations in Eq.(5) for all four plots are (px
o=d/Îa,py

o

=d/Îa,x0=0,yo=0) for d±1, ±5, ±10, ±20, ±30, ±40,

FIG. 2. The value ofxstd as a function of time is shown fora
=0.2375 andc=0.8 for initial conditionsspx,py,x,yd=sd,d,0 ,0d
with d=10, 15, 25, and 1000. Arrows indicate the value ofd for
each curve. The escape time, for the cases considered, decreases
with increasingd.

FIG. 3. The value ofxstd as a function of time is shown fora
=0.2375 andc=0.8 for initial conditionsspx,py,x,yd=sd,d,0 ,0d
with d=5.90 andd=5.95. The trajectory withd=5.90 remains
stable. The trajectory withd=5.95 is unstable.

FIG. 4. Stable(black) and unstable(white) regions of the phase
space forc=0.8 and varying values of the parametera: (a) 0øa
ø0.32; (b) 0øaø0.038. The vertical lines(arrows) above (a)
mark values ofa for which surfaces of section are shown in Fig. 7
(Fig. 8).
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±50, ±100. We see that the surfaces of section are identical
for Figs. 5(a) and 5(c) and for Figs. 5(b) and 5(d). However,
the overall scale has changed by a factor ofÎ0.6/0.06
=Î10<3.16. This scaling behavior is the reason we see
stripes of stable and unstable motion along lines of constant
c/a in Fig. 1. What is not clear is why the phase space
alternates between stable and unstable behavior as we change
the ratioc/a.

For the limiting casea=b=0 and arbitraryk, we can use
an additional scalingx→ x̄/Îucu,y→ ȳ/Îucu,px→ p̄x/Îucu, py

→ p̄y/Îucu that results in the equations of motion withc re-
placed by sgnscd. Combining it with thek-scaling law, we
conclude that a stability border between stable(bounded)
and unstable(unbounded) trajectories in the parameter space
of initial conditions,d, gravity-matter coupling strength,c,
and curvaturek is determined by the scaling lawc
=sk2/d2dccr. Numerically we find from Fig. 6 that there is
only one critical value of the gravity-matter couplingccr
.0.61 and the stability border, indeed, satisfies the above
scaling law.

Another important feature of this system is that as we
cross from one stable stripe to another in Fig. 1 qualitative
changes occur in the structure of stable phase space flow. In
Fig. 7, we show thepx versusx andpy versusy surfaces of
section fork=1, c=0.8, anda=0.29,0.13,0.06,0.036. These
values of a are indicated by the vertical lines above
Fig. 4(a). The initial conditions in all cases ared
= ±1, ±5, ±10, ±20, ±30, ±40, ±50, ±100. Note that each
time we pass from one stable stripe to the next, in the direc-
tion of decreasinga, an additional set of spines gets added to
the phase space structure in thepy versusy surface of sec-
tion. This process continues to the smallest values ofa that
we could resolve. Thepy versusy phase space structure for
the stable stripe with the smallest values ofc/a does not

contain any spines. Thepy versusy phase space structures on
stable stripes with very large values ofc/a contain many
spines.

It is interesting to see how the phase space structures in
Figs. 7(b)–7(d) and 7(f)–7(h) change as we move to the
right-hand edge of the stable stripe that they inhabit. In Fig.
8, we show thepx versusx and py versusy surfaces of
section fork=1, c=0.8, anda=0.156, 0.066, 0.0375, and
0.024. The initial conditions used are againd
= ±1, ±5, ±10, ±20, ±30, ±40, ±50, and ±100. All the
structures are expanding into larger regions of the phase
space. If we change the value ofc/a by a small amount and
pass into the unstable region on the right, all the phase space
structure disappears except for a tiny island around the pri-
mary fixed point atspx

* ,py
* ,x* ,y*d=s0,0,0,0d. Note that the

py versusy phase space structure in Fig. 8(h) lies on a stable
stripe to the left of the one in Fig. 7(h) and it has an addi-
tional set of spines.

We can also look at the effect of the “curvature” param-
eter, k. In Fig. 9 we show surfaces of section of the phase
space near the origin for the casesk=0 and k=1 with a
=0.06 andc=0.8. For k=0 only regular trajectories occur
near the origin, at least on the large scale shown. However,
with k=1 a stochastic web[18] appears to form in the neigh-
borhood of the origin.

IV. STABLE AND UNSTABLE FIXED POINTS FOR
PARTIAL HAMILTONIANS

It is interesting to consider the decomposition of the
Hamiltonian into partial Hamiltonians which contain indi-
vidual resonance contributions, similar to the approach of
Walker and Ford[19]. We can perform a canonical transfor-
mation from the Cartesian coordinatesspx,py,x,yd to action-
angle coordinatessJx,Jy,ux,uyd. The Hamiltonian then takes
the form

FIG. 5. Scaling behavior of the phase space.(a) px versusx
surface of section fora=0.06 andc=0.8. (b) py versusy surface of
section fora=0.06 andc=0.8.(c) px versusx surface of section for
a=0.6 andc=8.0. (b) py versusy surface of section fora=0.6 and
c=8.0. In all cases, the initial conditions were(px

o=d/Îa,py
o=d/Îa,

xo=0,yo=0) with d= ±1, ±5, ±10, ±20, ±30, ±40, ±50, and ±100.

FIG. 6. A coarse-grained plot of stable and unstable regions
(stability border) for k=1,a=0, as a function of initial conditions,d,
and gravity-matter coupling strength,c. Black squares contain one
stable trajectory and white squares contain one unstable trajectory.
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HsJx,Jy,ux,uyd = Ho + Vs2,0dcoss2uxd + Vs0,2dcoss2uxd

+ Vs4,0dcoss4uxd + Vs0,4dcoss4uyd

+ Vs2,2dcoss2ux + 2uyd + Vs2,−2dcoss2ux

− 2uyd

= 0, s8d

where the angle independent part of the Hamiltonian is

Ho = Jx − Jy +
3a

8
sJx

2 − Jy
2d +

c

2
JxJy s9d

and the coefficients of the resonance terms are given by

Vs2,0d =
a

2
Jx

2 +
c

2
JxJy, Vs0,2d = −

a

2
Jy

2 +
c

2
JxJy,

FIG. 7. Surfaces of sectionpx

versus x for c=0.8 and (a) a
=0.29, (b) a=0.13, (c) a=0.06,
and(d) a=0.036. Surfaces of sec-
tion py versusy for c=0.8 and(e)
a=0.29, (f) a=0.13, (g) a=0.06,
and (h) a=0.036. These values of
a occur at points in Fig. 4(a)
which are marked by vertical
lines. In all cases, the initial con-
ditions were(px

o=d,py
o=d,xo=0,yo

=0) with d= ±1, ±5, ±10,
±20, ±30, ±40, ±50, and ±100.

FIG. 8. Surfaces of sectionpx

versus x for c=0.8 and (a) a
=0.156, (b) a=0.066, (c) a
=0.0375, and(d) a=0.024. Sur-
faces of sectionpy versusy for c
=0.8 and (e) a=0.156, (f) a
=0.066, (g) a=0.0375, and(h) a
=0.024. These values ofa occur at
points in Fig. 4(a) which are
marked by arrows. In all cases, the
initial conditions were(px

o=d,py
o

=d,xo=0,yo=0) with d=1, 5, 10,
20, 30, 40, 50, and 100.
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Vs4,0d =
a

8
Jx

2, Vs0,4d = −
a

8
Jy

2, Vs2,2d =
c

4
JxJy,

Vs2,−2d =
c

4
JxJy. s10d

Following the Walker-Ford approach, we show phase
space plots for each of the six Hamiltonians

Hsnx,nyd = Ho + Vsnx,nydcossnxux + nyuyd = 0, s11d

where snx,nyd=s2,0d,(0,2),(4,0),(0,4),(2,2),(2,-2). Each of
these Hamiltonians is integrable. Only the Hamiltonians
Hs2,0d andHs0,2d appear to give rise to nontrivial phase space
behavior. ForHs2,0d, Jy is a constant of the motion. A phase
space plot ofpx versusx is shown in Fig. 10(a) for c=0.8 and
a=0.06. This system has primary hyperbolic fixed points at
(Jx=4/a,u=p /2) and(Jx=4/a,u=3p /2). No phase space or-
bits exist for large values ofpx.Î8/a. For Hs0,2d, Jx is a
constant of the motion. A phase space plot ofpy versusy is
shown in Fig. 10(b) for c=0.8 anda=0.06. This system has
primary elliptic fixed points at(Jx=4/a,u=p /2) and (Jx
=4/a,u=3p /2). Surfaces of sections for the remaining
Hamiltonians are plotted in Figs. 10(c)–10(f) for c=0.8 and
a=0.06. These remaining Hamiltonians have no nontrivial
primary fixed points and exhibit very regular behavior. In
Figs. 11(a) and 11(b) we plot thepx versusx andpy versusy
surfaces of section for the full Hamiltonian forc=0.8 and
a=0.06. It is clear that the full phase space is much more
complicated than its individual parts. Even for very small
values ofa andc we were not able to find a regime where the
full dynamics clearly showed the contributions from its indi-
vidual parts, as was the case for the system considered by
Walker and Ford. This suggests that the systems with the
unbounded Hamiltonians, for example the model(4)–(6)
considered in the present paper, constitute an unusual class
of the dynamical systems.

FIG. 9. (a) Surface of section ofpx versusx for k=0, a=0.06,
andc=0.8. (b) Surface of section ofpx versusx for k=1, a=0.06,
andc=0.8.

FIG. 10. Phase space plots for the six
Hamiltonians Hsnx,nyd for c=0.8 and a
=0.06.(a) A plot of px versusx for Hs2,0d.
(b) A plot of py versusy for Hs0,2d. (c) A
plot of px versusx for Hs4,0d. (d) A plot of
py versusy for Hs0,4d. (e) A plot of py

versusy for Hs2,2d. (f) A plot of py versus
y for Hs2,−2d.
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V. INTERVALS OF ADIABATIC MOTION

We have found that fora=0 anda!c, some of the be-
havior of unstablex andy oscillations can be understood in
terms of an adiabatic analysis. In Figs. 12(a) and 12(b), we
plot xstd versust and ystd versust, for the early times, for
k=1, a=0, d=1.9, andc=0.8. In Figs. 12(c) and 12(d), we
plot xstd versust and ystd versust for k=1, a=0.0015,d
=1.9, andc=0.8. We see some distinctive differences in the
behavior fora=0 and fora=0.0015. Fora=0, the period of
the y oscillations is approximately constant and the maxi-

mum amplitude of they oscillations can increase or decrease
with increasing time. Thex oscillations have very small am-
plitude relative to those of they oscillator, and they have a
very short period that appears to depend inversely on the
amplitude of they oscillations. Fora=0.0015, the period of
the y oscillations can vary and appears to depend on the
amplitude of they oscillations. Also, both the amplitude and
period of thex oscillations appears to depend on the ampli-
tude of they oscillations.

We can understand some of the behavior in Fig. 12 using
the theory of the adiabatic invariants[20]. Let us writeystd
= ȳstd+Dystd, whereDystd is assumed small,ȳstd is defined

ȳstd =
1

Txstd
E

0

Txstd

ystd dt, s12d

andTxstd is the period of thex oscillator at timet. We assume
thatTxstd is a very slowly varying function of time and does
not change significantly during one period of thex oscilla-
tion. Let us also writexstd= x̄std+Dxstd, whereDxstd is as-
sumed small and

x̄std = XstdsinFEt

Vxstddt + fG , s13d

with Xstd a slowly varying function oft. If we substitute Eq.
(13) into Eq. (6) for xstd and average over one period,Txstd,
we obtain

− Vx
2stdXstd + kXstd +

a

2
X3std + cȳ2stdXstd = 0. s14d

Thus the frequency of thex oscillator can be written as

FIG. 11. Surfaces of section
for the full Hamiltonian for a
=0.06 andc=0.8. (a) px versusx.
(b) py versusy.

FIG. 12. (a) Plot of xstd versust and (b) ystd versust for k=1,
a=0, d=1.9, andc=0.8. (c) Plot of xstd versust and(d) ystd versus
t for k=1, a=0.0015,d=1.9, andc=0.8.
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Vx
2std = k +

a

2
X2std + cȳ2std, s15d

which is a slowly varying function oft. In Fig. 13, we plot
xstd versust andystd versust for an interval of oscillations in
Fig. 12(a). In the region whereystd is large enough to ensure

the condition of the adiabatic approximationuV̇xu!Vx
2, the

agreement is excellent.
Because bothXstd andVxstd are slowly varying functions

of time, the adiabatic invariantVxstdX2std of the x oscillator
is approximately conserved during the time interval over
which this adiabatic approximation applies. Letymax=A de-
note the maximum value of they-oscillator amplitude, and
let Xmin denote the minimum value of thex-oscillator ampli-
tude. Then the approximate conservation of the adiabatic in-
variant gives

X2stdÎk +
a

2
Xstd2 + cȳ2std = Xmin

2 Îk +
a

2
Xmin

2 + cA2.

s16d

For k=1 and smalla andXstd, this becomes

Xstd < XminÎ A

ȳstd
. s17d

Thus, asȳstd decreases away from its maximum value, the
amplitude of thex oscillations increases as can be seen in
Fig. 12.

It is useful to substitute these expressions into the Hamil-
tonian in Eq.(4) for ystd at its maximum amplitude where
ẏstd=0 and average over one period of oscillation of thex
oscillator. We then find

Xmin
2 =

1

c
Fk +

a

2
A2G . s18d

Thus fora=0 the minimum amplitude of thex oscillator is
always the same, but foraÞ0 the minimum value of

x-oscillator amplitude depends on the maximum amplitude
of the y oscillator. This variation ofXmin with A can be seen
in Fig. 12(c).

After each interval of adiabatic motion, the system under-
goes a relatively short interval of nonadiabatic motion where
ystd approaches and crosses zero. During thenth nonadia-

batic interval, the adiabatic approximationuV̇u!V2 is vio-
lated, and thex oscillator acquires an additional phase shift
Dfn so that its phasef at the next,sn+1dth interval of
adiabatic motion becomesfn+1=fn+Dfn. The amplitude of
the y oscillator is also changed fromAn to a different value
An+1 that, for large enoughA, results in a very large change
of the integral adiabatic phase shiftetVxstddt@p at the sn
+1dth interval of adiabatic motion compared to thenth inter-
val. Since the result of the nonadiabatic transformationAn
→An+1, fn→fn+1 strongly depends on the phase with which
the x oscillator enters the nonadiabatic region of motion, the
system turns out to be very sensitive to any small perturba-
tions in the phase space. The latter may explain qualitatively
one of the possible mechanisms of the dynamical chaos in
the system.

VI. COSMOLOGICAL EVOLUTION IN TERMS OF THE
OBSERVABLE TIME AND GENERAL OVERVIEW

The purpose of this section is to sketch how the dynamics
of the models in Eq.(1) or (2) can be translated into cosmol-
ogy. Analysis of the regimes describing an observable cos-
mological evolution will be given elsewhere.

The model described in previous sections gives a classical
picture of a cosmological evolution of our Universe as a
self-consistent process of mutual creation of the interacting
gravity and matter fields from originally small quantum fluc-
tuations. The model only describes a classical stage of the
evolution when both fields have reached the macroscopic
coherent values. Justification of the classical model and de-
scription of the preceding spontaneous fluctuations can be
made on the basis of the full quantum equations of the quan-
tum field model(1) in a direct analogy with a well known
theory (quantum electrodynamics in a cavity) of the laser
radiation that starts from spontaneous quantum fluctuations
and, due to stimulated amplification, very soon reaches the
classical(often called as semiclassical) regime with a mac-
roscopically large(coherent) field amplitude[21]. Moreover,
the model(4)–(6) assumes that both fields are spatially ho-
mogeneous. Subsequent or simultaneous creation of all other
spatial modes of the scalar and other matter fields, for ex-
ample incoherent components of matter and radiation, could
alter cosmological evolution, especially near singularities
[13]. In particular, the process of reheating of the Universe
due to decay and dissipation of the coherent inflation scalar
field into incoherent matter and radiation as well as the pro-
cesses of spontaneous quantum creation of particles from a
vacuum due to various nonadiabatic mechanisms in a non-
stationary curved spacetime(e.g., like Hawking radiation
near black holes) [2] could become important at some stage
[3]. Obviously, all such effects should be treated on the basis
of a full quantum field theory of the model(1) or of the more

FIG. 13. Plot ofxstd andystd versust for an oscillation interval
in Figs. 12(a) and 12(b) (for k=1, a=0, d=1.9, andc=0.8).
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general models and are beyond the scope of the present
minisuperspace model(4)–(6).

The behavior of the model(4)–(6), so far, has only been
studied in terms of the conformal time,t. In order to relate
the predictions of the model with the observational cosmol-
ogy, one has to use the well-known relations[2]

t =E
0

t

uVstdudt =Î4pG

3
E

0

t

uystdudt s19d

between the conformal timet and the observable timet.
They stem from the Friedmann-Robertson-Walker represen-
tation for a line element,sdsd2=V2stdsdtd2=sdtd2, in the
conformally-flat spacetimegmn=V2hmn and for the spatially
homogeneous fields that we consider here.

For the caseaÞ0, it is of interest to plot the gravity field
(the “radius” of the Universe) ystd versust rather thanystd
versust, as was done in Fig. 12. In Fig. 14(a) we plot ystd
versust for k=1,a=0,c=0.8,d=1.9 [the same case as Fig.
12(b)]. In Fig. 14(b) we plot ystd versus t for k=1,a
=0.0015,c=0.8,d=1.9 [the same case as Fig. 12(d)]. We see
that, while in theystd versust plot in Fig. 12(d) the y oscil-
lations with larger amplitude have shorter periods, in theystd
versust plot in Fig. 14(b), these samey oscillations have
approximately constant period.

The conformal field Vstd, i.e., the y oscillator y
=s3/4pGd1/2V, plays the part of an overall scale factor in the
Universe that stretches the observable timet with respect to
the conformal timet. As a reference regime, let us consider a
regime of the explosive evolution of the conformal factor

Vstd = fst` − tdhg−1 s20d

that ends in a singularity at a finite moment of the conformal
time t` [ystd→` ast→ t`] and corresponds to a standard de
Sitter inflation

Vstd = V0expshtd, V0 = sht`d−1, s21d

over an infinite interval of the observable time with a con-
stant Hubble parameter

h =
1

V

dV

dt
=

1

V2

dV

dt
. s22d

Therefore, if the model has solutions which are not stabilized
dynamically at some finite level but appear to end in the
singularities, these singular solutions can have a well-defined
physical meaning in the Friedmann-Robertson-Walker repre-
sentation and, in fact, are of great importance for they de-
scribe the observable cosmological inflation. The end of the
conformal time att= t`, e.g., in the de Sitter regime when

t =E
0

t dt

uVstdu
=

1

hV0
s1 − e−htd → t` =

1

hV0
at t → + `,

s23d

implies a well-known fact that an event horizon

Restd = uVstduE
t

`

dt8/uVst8du = uVstdust` − td, s24d

i.e., the distance in the Universe from which the light could
bring to us an information about the events taking place at
the momentt, can be finite, e.g., of the order of 1/h, that
imposes a finite upper bound on the size of the observable
part of the Universe. At the same time, a particle horizon

Rpstd = uVstduE
0

t

dt8/uVst8du = uVstdut, s25d

i.e., an actual distance travelled by light from the initial mo-
ment of big bang until the present moment of timetstd or, in
other words, an actual size of the observable part of the
Universe at the present moment of time, tends to infinity at
t→ t` proportionally to the scale of the UniverseuVstdu→`.

Such explosive solutions seem arise naturally in the
present model(2). It is obvious whenb,0 anda.0 since in
this case the gravityy oscillator is unstable by itself. How-
ever, whenb.0 the explosive solutions take place due to the
nonlinear interaction of they oscillator (gravity) with the x
oscillator(matter), even if they oscillator is partially stable,
b.0, i.e., the cosmological constant is negative,L
=−3lf / s16pGd,0. A comparison with the reference explo-
sive law of Eq.(20), that corresponds to the de Sitter infla-
tion, demonstrates that the model in Eq.(1) has a potential to
explain naturally cosmological inflation and simultaneously
solve the problem of the cosmological constant.

The discussion above indicates that the unstable and ex-
plosive solutions are more interesting and closely related to
the observational cosmology than the stable solutions. At the
same time, the stable solutions which demonstrate chaotic
bounded behavior are also interesting for they shed a light on
how a newly borning Universe is “hesitating” and searching
for a way out of a small scale phase-space region around the
trivial zero fixed point to an inflationary large scale phase-
space region.

FIG. 14. (a) Plot of ystd versust for k=1, a=0, d=1.9, andc
=0.8. (b) Plot of ystd versust for k=1, a=0.0015,d=1.9, andc
=0.8. The inset shows more details of the early time behavior.

NONLINEAR DYNAMICS OF GRAVITY AND MATTER … PHYSICAL REVIEW E 70, 066210(2004)

066210-9



It would be interesting to check whether an original quan-
tum field model(1), that is much more involved than the
classical minisuperspace model(4)–(6), could explain a tran-
sition from a decelerating regime to an accelerating regime
of the Universe expansion that, according to recent astro-
nomical observations[22], occurs at a redshiftz,0.5. This
transition means that the observable accelerationd2uVu /dt2

after being positive at the de Sitter–like inflation stage,
should become negative for a finite interval of time and then
should change its sign to a positive value again at the latest
times.

A simple illustrative example shown in Fig. 14 is not of
that complicated type since the second derivatived2uVu /dt2

has the same sign on each interval of adiabatic motion that
corresponds to the expansion of the Universe from zero size
to some maximal radiussy=Ad with a deceleration and then
contraction of the Universe again to the zero size(big
crunch) with an acceleration.

Other regimes which are more relevant to the observa-
tions are possible in this system as well. Of course, for the
actual explanation and prediction of the cosmological evolu-
tion, along with the basic classical dynamics(4)–(6) of two
oscillators the other essential properties of the original quan-
tum field theory(1) have to be included in the analysis. Let
us mention some of them. First, according to the
renormalization-group analysis[1], the nonlinear coupling
parametersl , lf, andlc, that isc, b, anda, are in fact the
running constants which are the functions of the energy scale
of the process(in particular, of the relative momentumẏ/y).
This feature effectively modifies the nonlinearities of the
coupled anharmonic oscillators(4)–(6). It is especially im-
portant in the regions where the self-coupling parameterlf

=−16pGL /3 changes its sign around zero value, i.e., for
relatively small cosmological constantL, and in the infrared
and ultra-violet asymptotically free regions where all nonlin-
ear coupling parameters vanish(see details in[1]). Second,
the explicitly quantum effects in the chaotic dynamics and
averaging of the observable quantities, e.g.,kV2l, could be
important. Third, the effects of the spatially inhomogeneous
modes of the gravity and matter fields on the global nonlin-
ear dynamics and instability could be also important. Some
effects originated from an inclusion of one more spatial
mode of the matter field in a similar model witha=0,b,0,
c.0,k.0 was discussed in[13]. These and other effects in

the original model(1), which were not included in the par-
ticular dynamical model(4)–(6), as well as a realistic cos-
mology based on the model(1) with the unbounded Hamil-
tonian will be discussed elsewhere.

The present simplified model(4)–(6) clearly demonstrates
that the actual dynamics of the cosmological expansion is
naturally more intriguing and rich than was assumed in most
of the models used until recently for the interpretation of the
astronomical observations in cosmology.

VII. CONCLUSIONS

The system we consider here has very different structure
from the coupled nonlinear oscillator systems that one finds
in nonrelativistic classical mechanics, even though the
Hamiltonian at first sight has many similarities. A possible
analogy is that of an anharmonic oscillator coupled to an
external field whose strength is nonlinearly affected by the
degree of excitation of the oscillator. The system has very
unusual stability and dynamical properties. There are vast
regions of parameter space where the system is only stable
for very small values of the matter and gravity fields and
demonstrates fast growth of fields to infinity in an explosive
fashion. In other regions of parameter space, the system ap-
pears to be stable(bounded) regardless of the amplitude of
the fields although it can undergo huge variations in the val-
ues of these fields. The main conclusion from the numerical
analysis presented above is that the systems with the un-
bounded Hamiltonians constitute very interesting class of
nonlinear systems with very unusual and rich dynamics.
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